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Machine Learning Disruption Predictor Overview

ÅGoal:To develop a robust, data-drivenalgorithm that successfully predictsdisruption events with 
sufficient warning time 

ÅDatabases of relevant parameters on DIII-D, AlcatorC-Mod, EAST, and KSTAR

Å Implemented a real-time predictor running in the plasma control system on DIII-D
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warning alarm
is triggered ~150 ms
before the disruption 
occurs

algorithm computing time ranges 
between 160-250 microseconds, 
with spikes depending on the tree 
depth evaluation for that particular 
sample
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Disruption Warning Database

ÅFocus on dataset of 1258 plasma discharges (disruptive & non-
disruptive) from DIII-D 2015 campaign (Ḑρπtime samples)

Shot #164278
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Signal Description VariableName

% errorof plasma current and 
programmed current

Ὅ Ὅ ȾὍ

Poloidal beta 

Greenwald density fraction ὲȾὲ

Safety factorat 95% of minor 
radius

ή

Plasma internal inductance Љ

Radiatedpower fraction, ὖ Ⱦὖ

Loop voltageὠ ὠ

Stored plasma energyὐ ὡ

ὲ ρmode amplitude 
normalizedto ὄ

Ўὄ Ⱦὄ

Ὕprofile width normalized to 
minor radius

ὝȾὥ
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Binary Classification Based on Disruptive Phase Assumption

ÅFocus on dataset of 1258 plasma discharges (disruptive & non-
disruptive) from DIII-D 2015 campaign (Ḑρπtime samples)

ÅClassify sample ὸusing class label threshold, †

Åclose to disruption(ὸ ὸ † ) 

Å far from disruption(either ὸ ὸ † or

sample is from non-disruptive shot)

Shot #164278

Close to DisruptionFar from Disruption

Signal Description VariableName

% errorof plasma current and 
programmed current

Ὅ Ὅ ȾὍ

Poloidal beta 

Greenwald density fraction ὲȾὲ

Safety factorat 95% of minor 
radius

ή

Plasma internal inductance Љ

Radiatedpower fraction, ὖ Ⱦὖ

Loop voltageὠ ὠ

Stored plasma energyὐ ὡ

ὲ ρmode amplitude 
normalizedto ὄ

Ўὄ Ⱦὄ

Ὕprofile width normalized to 
minor radius

ὝȾὥ

ὸ †
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Classification of Time-Samples Using Random Forest

ÅPreliminary analysis ςchose † συπάίbased on physics parameter distributions

ÅPublished time-sample classification results in recent Plasma Physics and Controlled Fusion

[C. Rea et al. PPCF 80 084004 (2018)]

close to disr
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Ўὄ Ⱦὄ

Љ
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From Time-Sample Predictions to Real-Time Alarms

ÅEach tree in the random forest outputs 
one of two possible outputs:

Å0 (far from disruption)

Å1 (close to disruption)

ÅFinal RF output is the average of the 
individual tree predictions ςwe call this 
the disruptivity

Random 
Forest

A
la

rm

K. Montes ςTheory and Simulation of Disruptions Workshop, PPPL, July 17 2018

Ўὄ

ὄ
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From Time-Sample Predictions to Real-Time Alarms

ÅEach tree in the random forest outputs 
one of two possible outputs:

Å0 (far from disruption)

Å1 (close to disruption)

ÅFinal RF output is the average of the 
individual tree predictions ςwe call this 
the disruptivity

ÅHow do we use the disruptivity to 
trigger an alarm?

ÅTrigger when disruptivity exceeds 
hysteresis threshold for a specific 
time window

Random 
Forest

A
la

rm

?
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Ўὄ

ὄ
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Shot-by-Shot Binary Classification

ÅClassify each shot according to whether or not it disrupted:

ÅDisruption (positive class) or Non-disruption (negative class)

Was the alarm triggered?

Did the shot disrupt? Did the shot disrupt?

Yes

Yes Yes

No

No
No

False Positive True NegativeFalse NegativeTrue Positive
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Parameter Optimization

1. Time-Sample Class Label Threshold († )

2. Disruptivity Threshold (Ὠ)

3. Time Window Size (ύ)

RF level

Alarm level (post-processing)
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Parameter Optimization

1. Time-Sample Class Label Threshold († )

2. Disruptivity Threshold (Ὠ)

3. Time Window Size (ύ)

RF level

Alarm level (post-processing)

Training 
Set

Test 
Set
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Parameter Optimization

1. Time-Sample Class Label Threshold († )

2. Disruptivity Threshold (Ὠ)

3. Time Window Size (ύ)

Å Need cross-ǾŀƭƛŘŀǘƛƻƴ ǇǊƻŎŜǎǎ ǘƻ ŜƴǎǳǊŜ ŀ Ǌƻōǳǎǘ ǇŜǊŦƻǊƳŀƴŎŜ ƳŜǘǊƛŎ ŀƴŘ ǘƘŜ ƳƻŘŜƭΩǎ 
generalization capabilities

RF level

Alarm level (post-processing)

Training 
Set

Test 
Set

Training 
Set

Validation 
Set

Test 
Set

Optimize over loop
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K-Fold Cross Validation

For i in [1,5]:

For each class label time, Űclass :

Train random forest on ὢ ὢὭ
Get time - slice predictions on ὢ ὢὭ
For each disruptivity/window pair:

Test alarm simulation on ὢ ὢὭ
Calculate performance metrics

After loop:

Average performance metrics over all 5 

iterations for each parameter triplet

Pick best disruptivity threshold, window, and 

class label time (triplet that maximizes F1)

Pseudocode:
Validation

Validation

Validation

Validation

Validation
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Maximizing the F1 Score (Figure of Merit)

ὙὩὧὥὰὰ
Ὕὖ

Ὕὖ Ὂὔ
ὖὶὩὧὭίὭέὲ

Ὕὖ

Ὕὖ Ὂὖ

ὊρὛὧέὶὩς
ὖὶὩὧὭίὭέὲὙὩὧὥὰὰ

ὖὶὩὧὭίὭέὲὙὩὧὥὰὰ

F1 Score

ÅGrid Search:

ÅDisruptivity ὨᶰπȢρȟπȢωυ

ÅAlarm Window ύᶰυȟτπυάί

ÅClass Label Time † ᶰςυȟψππάί

(Sensitivity to the 

disruptiveclass)

(Sensitivity to the non-

disruptiveclass)
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Maximizing the F1 Score (Figure of Merit)

F1 Score
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ÅBest operational point (with 
highest average F1 score): 

ÅShorter alarm windows tend to 
yield better F1 scores

ÅClass label time threshold 
(† σςυάί) consistent with 
univariate analysis

Ὠȟύȟ† πȢφυȟυάίȟσςυάί
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75% of Test Set Disruptions Predicted > 40ms in Advance

ÅTrained random forest on entire training set using optimized †

ÅTested random forest predictor on entire test set using optimized Ὠȟύ

Non-Disruptions (217)

True Negatives False Alarms

Disruptions (36)

Predicted Disruptions Missed Warnings

27

9215

2
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Test SetInterpretability
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False Predictions

ÅMost false predictions show small or negative contributions from ήωυ, the normalized ὲ ρ
radial field component, and/or ὲȾὲ

False Negative False Positive
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ὲȾὲ

Ўὄ Ⱦὄ

Ўὄ Ⱦὄ
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Summary

ÅOur data-driven cross-validation procedure validates our univariate analysis of the distinction 
ōŜǘǿŜŜƴ ΨŘƛǎǊǳǇǘƛǾŜΩ ŀƴŘ Ψƴƻƴ-ŘƛǎǊǳǇǘƛǾŜΩ ǇƘŀǎŜǎ ƻƴ ǇƭŀǎƳŀ ŘƛǎŎƘŀǊƎŜǎ 

ÅOf the 10 signals in our DIII-D 2015 database, the 3 most relevant are:

1. ήωυ

2. Ўὄ Ⱦὄ

3. ὲȾὲ

Å Our model runs at very low cost (low false positive rate), and predicts χυϷof disruptions

Future Work

Å Improve cross-validation procedure with a time-ŘŜǇŜƴŘŜƴǘ ƳŜǘǊƛŎΣ ǎƻ ǘƘŀǘ ǘƘŜ ΨōŜǎǘΩ ƻǇŜǊŀǘƛƻƴŀƭ 
point is a function of the physics parameters

ÅCompare results to an algorithm that incorporates time-dependency

ÅTest robustness of results by applying to larger database of different campaigns and facilities

ÅExpand set of input physics parameters
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Backup Slides
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Disruption Warning Database

ÅSQL databases with Matlab, IDL, and Python queries

ÅAll disruptions included, regardless of cause

ÅḐτπplasma parameters at each time sample/record

ÅParameters potentially available in real time 

Å5ǳǊƛƴƎ ǘǊŀƛƴƛƴƎΣ ǿŜ ŀǾƻƛŘ ǳǎƛƴƎΧ

o Non-causally filtered data

o Intentional disruptions

o Disruptions caused by hardware failure (specifically check for feedback control on plasma 
current or UFOs events)

o Time samples not in the flattop phase
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Device Discharges Time Samples

C-Mod 5507 498,925

EAST 14713 1,209,217

DIII-D 10258 2,356,519

KSTAR 4219 773083
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Random Forest

ÅAn ensemble of many uncorrelated classification and regression trees

ÅAt each node in the each tree, the data set is split on a random feature by minimizing impurity 

K. Montes ςTheory and Simulation of Disruptions Workshop, PPPL, July 17 2018



22

Test SetInterpretability

ÅFor feature vector ὼ, can express disruptivity Ὢὼ as sum of ὑfeature contributions & bias term

ÅTracking feature contributions can give idea of drivers of disruptive behavior
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Prediction function for a forestof J trees:

Ὂὼ
ρ

ὐ
ὦ

ρ

ὐ
ὧέὲὸὶὭὦὼȟὯ

Prediction function for one tree:

Ὢὼ ὦ ὧέὲὸὶὭὦὼȟὯ

πȢωτ
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Real-Time Implementation

ÅHas run continuously in 
DIII-D PCS for more than 
850 discharges

Å66% non-disruptive 

Å6% flattop 
disruptions

Å28% rampdown
disruptions

ÅFeature contributions 
potentially available in 
real time for 
interpretation

ÅLow false positive rate 
τϷon non-

disruptive discharges
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